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Predicting low-dimensional spatiotemporal dynamics using discrete wavelet transforms
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A method is presented for predicting spatiotemporal time series whose dynamics is generated by a low-
dimensional deterministic dynamical system. It is based on a combination of time delay embedding and
wavelet expansion and is also applicable in cases where the dynamics may not be linearly decomposed into the
evolution of a small number of spatial modes. As an example, we predict chaotic transversal motions of two

Gaussian pulses along a one-dimensional axis.

PACS number(s): 05.45.+b, 02.70.—c, 04.25.— g, 06.50.—x

Methods for analyzing and predicting spatiotemporal time
series (STTS) are currently one of the most important chal-
lenges in nonlinear time series analysis [1,2]. In general, a
STTS consists of a sequence of (spatial) arrays x" € RM that
are taken from a spatially extended dynamical system at dis-
crete times t,=nAt (n=1,...,N), where At is the sam-
pling time and N is the length of the time series, i.e., the total
number of patterns. Each frame x” consists of M spatial
samples x,, or “pixels” and may thus (at a fixed time n)
formally be considered as a vector in RM,

The most successful approach developed until now to
analyze STTS {x"} is based on a linear decomposition of the
dynamics into spatial modes b*. The goal of this approach is
to find a few dominating modes b?, ... ,bX (K<M) so that
the patterns y"=a+ Ef: 1ch" provide a good approximation
of the sequence {x"}. The vectors a and b* are constant and
may be computed using the Karhunen-Loeve transformation,
for example [3—9]. The information about the temporal evo-
lution is contained in the coefficients ¢} . If such a decom-
position into a few dominating modes is possible this method
turns out to be very efficient. From the temporal evolution of
the (few) coefficients {c}} (k=1,...,K) low-dimensional
models can be derived and may be used for analyzing and
predicting the STTS [3-10].

However, even for low-dimensional systems the number
of dominating modes of a Karhunen-Loeve transformation
may be arbitrarily large. The dynamics of a & pulse, for
example, moving periodically back and forth on a one-
dimensional axis, can only be covered by as many basis vec-
tors as different positions of the pulse occur. Its closed orbit
in state space is one dimensional but a large number of
modes b* is necessary to describe the STTS. This problem
occurs in general when moving structures (e.g., solitons) ap-
pear in a spatially extended system. Our numerical example
given below therefore consists of a localized pulse that
moves chaotically on a one-dimensional axis.

Experimental examples for a spatially extended system
with moving localized structures are cavitation bubble fields
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in an external sound field [11,12]. The dynamics of the
bubbles can be described as oscillation in size and convec-
tion in space. Additionally, it can be observed that filamen-
tary structures are generated as substructures. Since wavelets
are objects that are localized in both real space and Fourier
space, they appear to be the natural choice for basis functions
for localized structures of a well defined size or scale. The
basic physical mechanism underlying this pattern formation
process may be modeled using a system of partial differential
equations (and is a topic of current research) [13,14]. Experi-
mental investigations of the global sound field emitted by the
oscillating bubbles give evidence for a low-dimensional
strange attractor [11,15-17]. Therefore the prediction
method presented in this paper presents itself as a possible
tool for predicting and modeling the spatiotemporal dynam-
ics of cavitation bubble fields. This is of interest not only for
basic research but also for many applications where ultra-
sound of high intensity is used.

For STTS whose dynamics originates from a low-
dimensional chaotic attractor but cannot be decomposed into
a small number of spatial modes we suggest the following
prediction method. Firstly, we make use of the fact that the
dynamics is low dimensional and reconstruct the state space
using time delay coordinates w"= (k" A"*}, .. . p"T(E@7D]
from a suitable global observable A" =h(x") of the system,
e.g., some mean value of a physical quantity. The dimension
d and the time delay / (lag) of this reconstruction have, of
course, to be chosen suitably [1,2]. Each state vector u” cor-
responds then uniquely to a pattern xX”. If we want to predict
the temporal evolution of a given state u we determine the J
nearest neighbors w”i (j=1,...,J) of u in state space and
superimpose the corresponding future patterns x"i*!. The
details of this superposition determine the accuracy of the
prediction. For our numerical example we will use a
weighted sum

J
XnJrl:E w;_txn}-+1 (1)
j=1
with weights given by
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S s
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For the parameter s we choose s=max;_;_,[u—u"i. To
use the prediction method in this form the neighboring pat-
terns X'/ have to be easily accessible. If they are large
(M>10 000, for example) this may lead to considerable stor-
age and CPU-time requirements if long sequences
(N>1000) are used. To avoid this problem one may use the
above-introduced scheme in combination with a Galerkin ex-
pansion method based on discrete wavelet transforms
(DWT’s) [18]. The DWT of many patterns consists only of a
few dominating coefficients whose value and location in the
spectrum have to be stored. This truncation typically yields
compression rates between 10 and 100 and may also serve
for noise reduction. Furthermore, since the DWT is a linear
transform, the superposition (1) may be computed in the
wavelet domain for the dominating wavelet coefficients only
and then be subjected to the inverse DWT to obtain the pre-
dicted pattern. If the wavelet transform is performed at the
beginning of the analysis the global observable # may be
defined as a function of the wavelet coefficients. In this case
the position and the scale of spatial structures can be taken
into account very efficiently.

To demonstrate the efficiency of the proposed prediction
scheme we have generated a STTS {x"} that consists of two
Gaussian pulses that move chaotically on a one-dimensional
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FIG. 1. Spatiotemporal evolution of a Gaussian pulse whose
position is controlled by the Lorenz attractor to simulate a chaoti-
cally moving structure. Shown are 200 time steps with a sampling
rate of Ar=0.02. The spatial resolution is M =256 and the noise
amplitude € =0.1.
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FIG. 2. Result of an iterated nonlinear prediction of the STTS
shown in Fig. 1. For the reconstruction the ten dominating Lemarie
wavelet coefficients were used. The solid lines give the true posi-
tions of the centers of the pulses. To appreciate the effect of the
wavelet truncation only, compare Fig. 3.

axis. The position of the Gaussian pulses is controlled by the
x variable and the z variable of the Lorenz system

x=—ox+oy, 4)
y=—xz+Rx—y, 5)
z=xy—bz, (6)

with R=45.92, 0=16, and b=4. The sampling rate was
At=0.02 and the spatial resolution M =256. Uniformly dis-
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FIG. 3. Time series shown in Fig. 1 truncated using the ten
dominating Lemarie wavelet coefficients only (without prediction).
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tributed random numbers re[—eg,e] with £€=0.1 were
added to the STTS to simulate measurement noise. Two hun-
dred time steps of the resulting noisy STTS are shown in Fig.
1. As a global observable 4 we used the center of mass of the
(spatial) patterns, i.e., A"=h(x")=3M_ mx"/S¥_ x" . The
states were reconstructed in a four-dimensional state space
using a time delay of /=35. For the local fits approximating
the flow in the reconstructed state space we used J =4 near-
est neighbors [see Eq. (1)]. The neighboring state points
were taken from a sequence of 4000 patterns of the STTS
that was used as a training set for the prediction scheme.
Figure 2 gives the result of a nonlinear prediction that was
computed iteratively, i.e., for the 200 time steps shown we
always used the last predicted state as the new reference
point for the next prediction step. The true positions of the
centers of the two pulses are indicated by solid curves in Fig.
2. For projecting the spatial patterns onto dominant sub-
spaces we used DWT’s based on Lemarie wavelets [18].
Only the ten largest wavelet coefficients of each pattern x”
were stored and used for reconstruction corresponding to a
compression ratio of more than 25. To visualize the effect of
this truncation Fig. 3 shows the STTS given in Fig. 1 that
was subjected to the DWT and then reconstructed using the
ten largest coefficients only. To appreciate the efficiency of
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the prediction scheme one should compare the predicted (and
truncated) STTS shown in Fig. 2 to the truncated original
time series given in Fig. 3. The good agreement of both
patterns during the first half of the time interval shows that
the method allows efficient intermediate time predictions of
STTS.

In conclusion, we have presented a prediction scheme for
low-dimensional spatiotemporal time series that is based on
a time-dependent activation of spatial patterns (or modes)
using a low-dimensional state space reconstruction from a
suitably chosen global observable of the system. The basic
idea of this method was demonstrated using a locally con-
stant prediction scheme in state space and a discrete wavelet
representation of the spatial patterns. Generalizations using
more sophisticated prediction schemes (e.g., radial basis
functions or neural networks) and different encodings of the
spatial patterns to be activated will be discussed elsewhere.
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